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Abstract—Recently, Compressed Sensing has been proposed as
a promising physical layer technique for Multi-User Detection in
Massive Machine Communication (MMC). MMC is characterized
by low data rates, low control signaling overhead and different
traffic models compared to human-oriented communication. In
this context, Compressed Sensing based Multi-User Detection
(CS-MUD) enables efficient direct random access as a potential
solution for the massive access problem. Previously work has
not considered realistic traffic characteristic. In this work, we
consider a typical Poisson traffic model to formulate a MAP
detection problem exploiting user sparsity.

I. INTRODUCTION

Massive Machine Communication (MMC) is expected to
grow significantly in coming years [1], posing new require-
ments for existing communication systems, which are mainly
designed for human-oriented communication. One property of
MMC is sporadic transmission, which means nodes are only
occasionally active for data transmission with low data rates.
Therefore, it is not well matched to extensive signaling and
complex scheduling of current solutions [2]. With a massive
number of devices involved, one of the objectives for MMC
solutions is to efficiently handle the massive access problem.
Due to sporadic transmission, only a few users are occasionally
active to transmit data packets with small size, which makes
high control signaling inefficient. Previous literature shows
that MUD in MMC can be formulated as a sparse detection
problem with modeling user inactivity [3]. Thus, Compressed
Sensing based Multi-User Detection (CS-MUD) can be applied
to jointly detect activity and data at the receiver, which reduces
control signaling since the activity of all users does not need
to be signaled to the receiver anymore.

Previously, a very simplified model has been used to
describe the user activity. In [3] a simple Bernoulli model
is considered. Each user is independently active with the
same low probability pa, which is not accurate enough to
model the traffic pattern in MMC systems. In this paper, we
exploit the pdf of the sparse multi-user signal through a more
realistic traffic model. For the purpose of more realistic traffic
modeling, a Poisson model will be considered here. Therefore,
a new MAP detection problem is formulated and in order to
solve this MAP problem, a modified sphere detector will be
proposed. Finally, a sorting approach for complexity reduction
is discussed.

The reminder of this paper is organized as follows: Sec-

tion II presents the general system description in the context
of multi-user uplink transmission as the basis of the inves-
tigation. Section III formulates the MAP detection problem
w.r.t. different traffic models. The analysis of our algorithms
is given in Section IV. In Section V, we investigate an over-
determined CDMA system as an example to verify the analysis
in Section IV. Finally, the paper is concluded in Section VI.

II. SYSTEM DESCRIPTION

In this paper, an uplink scenario is considered with K
nodes transmitting data to a central Base Station (BS), as
shown in Fig. 1. The BS is capable of advanced signal
processing, such as detecting signals and aggregating messages
for further application while the node devices are low complex-
ity. We assume that nodes are only occasionally active, e.g.,
packets might be transmitted to the BS event driven. During
the active time, each node will transmit data packets of small
size. Meanwhile, the BS is active all the time in order to listen
to the information coming from all active nodes.
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Figure 1: Sporadic uplink transmission of multiple devices commu-
nicating with a BS. Each time slot corresponds to one data frame and
the system is assumed to be synchronous.

Herein, we assume all users are synchronized on a slot ba-
sis, which means users switch activity on the same symbol time
basis. Accordingly, active users transmit a frame of symbols
per slot but we focus on the detection of one single symbol
per user. The uplink transmission model can be described by
the linear input-output relation at the symbol clock as

y = Tx+ n, (1)

where the stacked vector x contains all the symbols from all
K nodes in one same slot. To incorporate node inactivity, we



model an inactive node as "transmitting" a zero and active
users select data symbol from a modulation alphabet A, where
A represents a discrete modulation alphabet, e.g., Binary
Phase Shift Keying (BPSK). Consequently, the elements of
vector x belong to the so called augmented symbol alphabet
A0 = A

⋃
{0}. Matrix T summarizes the influences of channel

and medium access between the nodes and BS. For example,
it represents both the spreading and channel convolution in
CDMA systems. Here, we assume that we have a fully loaded
or over-determined system, which means that the number of
rows of T is equal or larger than the number of columns
in it. Finally, n denotes additive white Gaussian noise with
zero mean and variance σ2

n and the vector y represents the
measurements of signal x at the receiver.

In sporadic communication, the basic assumption is in-
termittent (sporadic) user activity, which usually leads to a
small number of active users compared to the total number of
users. Consequently, there will be only a few number of non-
zero entries in vector x, which enables the ideas from sparse
signal processing and CS. In the following, we will consider
the sparsity exploiting sphere detector to solve the MAP
detection problem for (1) under the assumption of two well-
known different traffic models, which determine the statistical
properties of x.

A. Bernoulli Model

From the user perspective, all nodes are independent and
each of them can be assigned a certain activity probability. If
we assume all user have the same activity probability pa, the
active users will transmit data with Pr(xk ∈ A) = pa, while
inactive nodes are modeled with Pr(xk = 0) = 1 − pa. Con-
sequently, for synchronous transmission, the joint probability
distribution for vector x can be formulated as

Pr{x} = (1− pa)K−‖x‖0
(
pa
|A|

)‖x‖0
, (2)

where ‖x‖0 denotes the zero-"norm" counting the number
of non-zero entries in x and |A| is the cardinality of the
modulation alphabet used for data transmission. This model
has been already well exploited in former works in [3], [4]
and here is used for performance comparison.

B. Poisson Model

The Bernoulli model is very simple but not realistic and
accurate enough for the traffic modeling. It has been shown
that traffic of MMC communications can be modeled via
Poisson models [5], whose joint probability distribution can
be described as

Pr{x} = λ‖x‖0e−λ

‖x‖0!
(
K
‖x‖0

) , (3)

where λ is the rate parameter, denoting the mean number
of active nodes. The solution of the MAP detection problem
with (3) as a priori information is one of our goals in this
work.

III. PROBLEM FORMULATION

Given the input-output relation in (1), a MAP detector can
be formulated to estimate signal x. In general, the system
matrix T has to be estimated at the receiver, e.g., via training

sequences [6]. Here we assume the perfect knowledge of
matrix T at the receiver. In [3], a general form of MAP
detection, which is regularized by a priori information is given
as

x̂opt = arg min
x∈A0

‖y −Tx‖22 − σ2
n log Pr{x}, (4)

where the penalty term is scaled by the noise variance σ2
n.

Usually, if the term, −σ2
n log Pr{x}, is monotonically

increasing, the problem in (4) can be efficiently solved by
a Sparsity Aware Sphere Detector (SA-SD) [3]. In case of
different traffic models, (4) can be reformulated w.r.t (2)
and (3). For simplicity, a BPSK modulated alphabet is applied
here with the augmented alphabet A0 = {±1} ∪ {0} and
therefore, we have |A| = 2. The sparsity aware MAP detection
problem w.r.t. (2) is given as

x̂opt = arg min
x∈A0

‖y −Tx‖22 + σ2
n‖x‖0 log

(
1− pa
pa/2

)
, (5)

which has already been well exploited and the validity of SA-
SD for solving (5) has been proved and can be found in [3],
[7].

Similar to Bernoulli model, if we reformulate the MAP
problem in (4) using (3), naturally a different cost function
results

x̂opt = arg min
x∈A0

‖y −Tx‖22 + σ2
n log

{
K!eλ

λ‖x‖0(K − ‖x‖0)!

}
.

(6)

As mentioned earlier, the cost function (6) has to be
monotonically increasing to allow for a sphere detector imple-
mentation. In the next section, the analysis for the application
of sphere detector w.r.t. Poisson model will be presented.

IV. ANALYSIS

In this section, a new sphere detector exploiting signal
sparsity for solving the MAP problem given as (6), named
Poisson based SA-SD (P-SA-SD), will be analyzed. For the
purpose of better comparison, we name the SA-SD for (5) as
Bernoulli SA-SD (B-SA-SD) in this work.

In order to simplify the complex mathematical expression
in the analysis, we use the following shorthand to represent
the a priori part in (6).

P{‖x‖0, λ,K} = log

{
K!eλ

λ‖x‖0(K − ‖x‖0)!

}
(7)

A. Poisson based SA-SD

Assuming T with full rank in an over-determined or fully
loaded system, QR decomposition can be used to reformulate
the MAP problem (6). Using T = QR where R is a upper
triangular matrix and Q is an unitary matrix, we get

x̂opt = arg min
x∈A0

‖QHy −QHQRx‖22 + σ2
nP{‖x‖0, λ,K}

(8)
= arg min

x∈A0

‖y′ −Rx‖22 + σ2
nP{‖x‖0, λ,K}. (9)



Here, y′ represents the filtered received signal by matrix QH

not changing the estimation problem. As we mentioned above,
for the purpose of applying sphere detection, we need to prove
the a priori part together with the maximum-likelihood term
to be monotonically increasing. For this purpose, we reform
the cost function as

x̂opt = arg min
x∈A0

K∑
k=1

{
(y′k −

K∑
l=k

Rlkxl)
2 + σ2

nP{|xk|0, λ,K}

}
.

(10)
Apparently, the cost of the maximum-likelihood term for the
jth layer is given by

ζj = |y′j −
K∑
i=j

Rjixi|2 (11)

The second step is to calculate the a priori cost for the jth

layer. Firstly, we rewrite the a priori term as

P{‖x‖0, λ,K} = log


constant︷ ︸︸ ︷
K!eλ

λ‖x‖0(K − ‖x‖0)!︸ ︷︷ ︸
variable

 , (12)

where the nominator can be ignored in the analysis as it is
constant. Thus, only the denominator remains to be considered.
The variable part can be rewritten further as

P{‖x‖0, λ,K} = C − ‖x‖0 log λ︸ ︷︷ ︸
d1

− log{(K − ‖x‖0)!}︸ ︷︷ ︸
d2

.

(13)

We define P̃{‖x‖0, λ,K} = P{‖x‖0, λ,K} − C as the
remaining cost term, given as

P̃{‖x‖0, λ,K} = −‖x‖0 log λ︸ ︷︷ ︸
d1

− log{(K − ‖x‖0)!}︸ ︷︷ ︸
d2

. (14)

The sphere detector calculates the cost of (13) layer by layer.
Therefore, considering the jth layer in the detector with 1 ≤
j ≤ K, we have to differentiate two cases. In the first case, the
SD calculates the cost of jth layer for hypothesis xj = 0. Then
the zero-“norm” ‖x‖j−10 stays constant, i.e., ‖x‖j−10 = ‖x‖j0.
Consequently, the overall a priori cost up to the jth layer is
given as

dj1|xj=0 = (‖x‖j−10 + 0) log λ = ‖x‖j−10 log λ, (15)

dj2|xj=0 = log{(K − (‖x‖j−10 + 0))!} = log{(K − ‖x‖j−10 )!},
(16)

with no change of cost from the (j − 1)th to jth layer. In the
other case, if we assume xj = ±1, we have ‖x‖j0 = ‖x‖j−10 +
1. Thus, the two cost terms are given as

dj1 = (‖x‖j−10 + 1) log λ = dj−11 + log λ, (17)

dj2 = log{(K − (‖x‖j−10 + 1))!} = dj−12 − log(K − ‖x‖j−10 ).
(18)

Here, (18) is from the properties of factorial and logarithm.
Finally, recalling the minus sign in (13), the increment of a
priori cost from (j − 1)th layer to jth layer is

4da|jj−1 =

{
0, xj = 0

log(
K−‖x‖j−1

0

λ ), xj = ±1

Therefore, considering the maximum-likelihood cost, the over-
all cost in jth layer can be given as

4d|jj−1 = ζj +4da|jj−1. (19)

Accordingly, to prove monotonicity the following inequality
should hold.

4d|jj−1 ≥ 0 (20)

Given the analysis above, we get

σ2
n log(

K − ‖x‖j−10

λ
) + ζj ≥ 0, (21)

considering a specific signal-to-noise ratio (SNR). Further-
more, it can be reformed to

‖x‖j−10 ≤ K − λ · e(−
1
σ2n
ζj)
. (22)

Considering the constraint given in (22), the zero-“norm”
‖x‖j−10 for the (j − 1)th layer should fulfill the inequality
to ensure a monotonic increase of the cost at the jth layer.
Eq. (22) has to be fulfilled for every step of the tree search
facilitated by sphere detection to achieve a MAP estimate.
Unfortunately, it cannot be guaranteed that the sphere detector
does not visit branches that violate (22). However, it is well
known from literature that even in low SNR cases the worst
case behavior of the sphere detector will still be better than
exhaustive search. Thus, for very low λ it is reasonable to
assume that sparse solutions will still be preferred. To this
end, the SNR in the inequality needs also to be considered. If
we consider a general constraint covering all elements in x up
to layer K − 1, it can be given as

‖x‖K−10 ≤ K − λ · e(−
1
σ2n
ζK)

. (23)

Clearly, this constraint highly depends on the current SNR,
i.e., 1/σ2

n. Specifically, if we have a extremely high SNR with
σ2
n → 0, there will be no effect from the a priori part. We will

simply have a maximum likelihood detection problem with
condition

‖x‖K−10 ≤ K, (24)

which will always be fulfilled. However, on the other hand, if
we are facing a quite low SNR with σ2

n → ∞, the constraint
will turn out to be

‖x‖K−10 ≤ K − λ. (25)

This is clearly the worst condition that can be used to check
for an optimal solution. Even though the condition cannot be
guaranteed, the sphere detector can still be modified to solve
the MAP problem for the Poisson model. In following part,
we have some numerical results showing how the a priori cost
behaves given different K and λ.

Fig. 3a and Fig 3b show the results of different λ given
K = 10, 100. As we can see, with low λ, the a priori cost
can be ensured to be monotonically increasing. For example,
when K = 10 and λ = 1, there will be no decrease for
P{‖x‖0, λ = 1,K = 10} even if the sphere detector runs
through all the hypotheses. However, in the case of λ = 2,
there is small region where P{‖x‖0, λ = 1,K = 10}
decreases. Specifically, as shown in Fig. 2, the sphere detector
will run all the hypotheses {±1, 0} for each layer. Here, the
value in each branch represents one hypothesis for each symbol
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Figure 2: Search tree for sphere detection with xj indicating the
current estimate with all hypotheses up to the jth layer.

in x. Considering the estimate for K layers, xK might reach
the case of all elements choosing candidates from {±1}. As
a consequence, the cost will decrease. However this case will
hopefully only happen with low probability and will not occur
if the sphere detector converges to the sparse solution. To
decrease the probability even further we will propose a sorting
strategy, which will be introduced in the next section. Similar
observations can be drawn for K = 100. Thus, Fig. 3 can be
used as an indication showing which λ will be acceptable.
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Figure 3: Examples for the evaluation of penalty term
P{‖x‖0, λ,K} with different rate parameters λ and K; Cor-
respondingly, the probability mass function for different λ is
given in the lower part.

B. Correlation Sorted Sphere Detector

As an optimum method to solve (4), sphere detection is still
of high complexity even in low system dimension. As shown in
[8], sorting can be used to efficiently reduce the complexity of
sphere detection. Additionally, the a priori cost given by (7)
will probably not reach the decreasing region if the sphere
detector can find the active users in the first layers with high
probability leading to zeros in the lower layers. Therefore, we
propose a sorted sphere detector to reduce the complexity and
also make sure the solution of (6) converges quickly to the
solution.

In [9], Orthogonal Matching Pursuit (OMP) has been
presented as a popular algorithm with low complexity in CS-
MUD. OMP is a greedy CS algorithm, which exploits the
correlation between the received signal y and the system
matrix T. The correlation between y and T is given by

cn = |TH
n y|, (26)

where Tn represents the system matrix, whose columns are
normalized to unit vectors [10]. The columns in Tn, whose
correlations with y are higher, are considered having higher
probability to be active. From the perspective of sphere detec-
tion, the detector starts from the root to check the augmented
alphabet A0, which is also the Kth element in x. Thus, our
idea is to enforce the detector to start from the layer with
highest correlation and follow in descending correlation order,
which potentially saves effort in searching the nodes with
minimum cost. Therefore, we use the correlation as defined
in (26) to sort the system matrix T.

The specifics of the sorted P-SA-SD are given by Alg. 1.
Due to the sorting, active users are detected in the first
layers of the search tree with high probability, as shown in
Fig. 2. Therefore, condition (23) is less likely violated as the
remaining layers are zeros with high probability.

Algorithm 1 Correlation sorted P-SA-SD

Require: y, Tn, σ2
n, λ, K

cn ← |TH
n y|

Index← sort(cn, ‘ascend′);
T̃← T(Index);
Q̃, R̃← qr(T̃);
ỹ← Q̃Hy;
for k = K, · · · , 1 do

for all xk ∈ A0 do
ζk ←

∑K
k=1

(
ỹk −

∑K
l=k rklxl

)2
;

dka ← σ2
n

(
P{‖x̂‖k0 |λ,K} ← ‖x̂‖k0

)
;

dx ← ζk + dka − dk−1a ;
end for
x̂k ← argmin∀xk∈A0

dx
end for
x̂opt(Index)← x̂opt;
return x̂

V. PERFORMANCE EVALUATION

A. Setup

In order to verify the analysis in Section IV, an over-
determined system with K = 10 user nodes with CDMA [11]



as the medium access scheme and spreading sequence length
of Ns = 16 is considered in this section. The case of
under-determined CDMA systems is beyond the scope of
discussion in this paper while the extension is also possible [7].
Furthermore, each active node is assumed to transmit a BPSK
modulated symbols every time. Specifically, the symbols of
active nodes are spread to chips by a node-wise spreading code
and transmitted over a frequency selective Rayleigh fading
channel modeled as Lh = 6 independent and identically
Rayleigh distributed taps with exponential decaying power
delay profile. For simplicity, we assume the nodes to transmit
synchronously in time and the convolution of user-specific
spreading and the channel effects is summarized by matrix
A ∈ C(Ns+Lh−1)×K . A matched filter is applied at the BS to
go from chip rate back to symbol rate. In this setup, perfect
channel state information is assumed at the receiver, which
can be obtained by periodic training phases. Meanwhile, a pre-
whitening filter P ∈ CK×K is deployed to ensure uncorrelated
white Gaussian noise and capture the symbol-rate input-output
relation as follows.

y = PAHAx+PAHn

= Tx+ ñ. (27)

The details of applying the matched filtering and pre-whitening
filter can be found in [12]. We have vector y ∈ CK and
matrix T ∈ CK×K effectively summarizing the influences
from spreading, channel and filtering at the receiver. The setup
for the simulation in this paper is given as follows.

Simulation Parameters
# of Nodes K = 10

Spreading Gain Ns = 16
Channel Impulse Resp. Lh = 6 taps

Channel Type complex-value Rayleigh fading
Modulation Type BPSK

Channel State Information Perfect

Activity Model Bernoulli(pa = 0.2)
Poisson(λ = 2)

B. Activity and Data Detection

In this work, we use an augmented alphabet A0 = {±1, 0}
for data modulation and it indicates both the user activity and
data. The performance evaluation is based on A0 = {±1, 0}
and we take the Symbol Error Rate (SER), which includes both
activity and data detection errors, as performance indicator. In
this part, the oracle SER shows the case of perfect user activity
knowledge known at the receiver for comparison.

Fig. 4 shows the results of the P-SA-SD, which was
introduced in Section IV. In order to clearly see the validity
of the P-SA-SD, we also apply the B-SA-SD for the Poisson
traffic model, which originally has been developed for the
Bernoulli model. Due to the model mismatch of B-SA-SD,
we have a slight performance gain compared to the P-SA-SD
shown by the blue curve with squares. Here, the oracle case is
plotted for baseline comparison with perfect knowledge of user
activity at the BS demonstrating the loss by sphere detection.
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Figure 5: a), SER results for B-SA-SD with or without sorting; b)
SER results for P-SA-SD with or without sorting.
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Figure 4: SER results for MAP detection given in (6) with P-SA-SD
and the B-SA-SD applied for the Poisson model here for comparison.

Fig. 5 presents the results of Sphere Detector with sorting,
which will be named as sorted SA-SD, for both Bernoulli
and Poisson models. In general, the Bernoulli and Poisson
models have almost the same SER results because the activity
probability of Bernoulli model is set to be pa = 0.2, which is
the same as the rate parameter λ = 2 in Poisson model, given
K = 10 nodes. Apparently, the sorted SA-SD achieves the
same performance as the unsorted SA-SD in Bernoulli model
and the same is true for the Poisson model. However, there is
still a large gap to the oracle case, which is mainly determined
by the activity detection errors. While the sorting results in
the same SER performance it will decrease the complexity as
shown in the following.



C. Complexity Comparison

Fig. 6 plots the complexity of B-SA-SD and P-SA-SD as
the number of visited nodes respectively. Specifically, the num-
ber of nodes in each layer of sphere detection is determined by
the augmented alphabet A0. Each checked hypothesis means
one more visited node in the complexity results. As shown in
Fig. 6, the correlation sorting highly reduces the complexity
in the range of low SNR but in the high SNR range all the
curves converge. Therefore, the sorting gives us the same
SER performance as introduced in last section as well as
significantly reduces the complexity of sphere detector.
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Figure 6: Complexity comparison for P-SA-SD and B-SA-SD with
or without sorting in terms of the number of visited nodes.

VI. CONCLUSION

In this paper, a study of modified sphere detection methods
is presented w.r.t. different traffic models in MMC communica-
tion systems on the basis of Compressed Sensing based Multi-
User Detection. The Poisson based Sparsity-Aware Sphere
Detection (P-SA-SD) optimally solves the maximum a pos-
teriori detection problem for the Poisson model with higher
probability. Furthermore, we introduced a correlation based
sorting for the proposed P-SA-SD that leads to a significant
decrease of complexity.
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